From: Marcos Aquino/R3/USEPA/US

Sent: 12/12/2011 2:04:19 PM

To: Jones.Bill@epamail.epa.gov

CC:

Subject: Fw: Dimock share drive stuff

Fyi.

Marcos Aquino EPA Region 3

Sent by EPA Wireless E-Mail Services

---- Original Message -----

From: Lora Werner

Sent: 12/12/2011 01:33 PM EST

To: Marcos Aquino

Subject: Re: Dimock share drive stuff

Thank you!!!!!!!

Lora Siegmann Werner, ATSDR/CDC Region 3

---- Original Message ----- From: Marcos Aquino

Sent: 12/12/2011 01:15 PM EST

To: Elizabeth Quinn

Cc: Lora Werner; febbo.carol@epa.gov; Karl Markiewicz

Subject: Re: Dimock share drive stuff

Betty Ann,

Lora, FYI.

I quickly but not exhaustively went thu the folders and files on the share drive and saw with radionuclide data the tables you showed me and nothing else. Like we talked what data exists does not reach the Preliminary Remediation Goals (PRGs) for Radionuclides for the Thorium isotopes and the MCL of 30 ug/l for total uranium.

Carol,

I looked at some Dimock data that had radionuclide analysis with no concerns on what was reported, FYI. No Gross alpha, beta or Ra-226/228 analysis provided.

Lora,

BTW I looked up MBAS. **Methylene blue active substances (MBAS)**I think its surfactants (soap like detergents). Found this on the web.

I will be available by phone after 2.

Methylene blue active substances (MBAS)

Surfactants and Their Significance in the Environment Detergents contain synthetic or organic surfaceactive

agents called surfactants, which are derived from petroleum

product precursors. They have the common property of lowering the surface tensions of water thus allowing dirt or grease adhered to various articles to be washed off. Industrial facilities use detergents to clean machinery. Soap manufacturers and households will also discharge anionic detergents into the surface water. The problem with these types of discharges is that surfactants can present significant environmental pollution problems. In aquatic environments, surfactants may form a surface film and reduce oxygen transfer at the water surface. Some surfactants may be acutely toxic to aquatic organisms. Detergents can damage fish gills by stripping them of their

DIM0084754 DIM0084754

natural oils, thus interrupting oxygen transfer. Surfactants and detergents may also cause suds or foam to form on surface waters, which is aesthetically displeasing. Furthermore, this foam often contains nutrients such as nitrogen and phosphorous which can; in turn, provoke algae blooms. Surfactants can also alter the hydraulic characteristics of soils, affecting the movement of contaminants through soils and into groundwater. Surfactants are very slow to biodegrade and have carcinogenic and reproductively toxic byproducts

such as nonylphenol, which is currently

regarded as a potent endocrine disrupter.

Testing and Reporting

Commercial mixtures of surfactants consist of several tens to hundreds of homologues, oligomers and isomers of anionic, nonionic, cationic and amphoteric compounds. Therefore, their identification and quantification in the environment is complicated and cumbersome. Anionic surfactants are the most prominent surfactants. The list of the producers of anionic surfactants and trade names of products is very extensive. According to Arthur T. Hubbard in *Biodegradable and Chemically Degradable Anionic Surfactants* published in the Encyclopedia of Surface and Colloid Science (2002), anionic surfactants account for 63% of synthetic surfactant production, with LAS on top of the "big six" surfactant list. It is for these reasons, the industry standard is to analyze for Methylene blue active substances (referred to as MBAS) using LAS as the equivalent standard. There is currently only a single determinative analytical technique approved for NPDES reporting – colorimetric, methylene blue. This method is useful for estimating the anionic surfactant content of waters and wastewaters, but the possible presence of other types of MBAS always must be kept in mind.

The Water Quality Standard for Class C water in North Carolina is currently 500 mg MBAS/L. There are three EPAapproved

methods for methylene blue active substances determination: EPA Method 425.1, Standard Methods 5540 C and ASTM D233088.

Standard Methods for the Examination of Water and Wastewater describes the procedure as follows: Methylene blue active substances bring about the transfer of methylene blue, a cationic dye, from an aqueous solution into an immiscible organic liquid upon equilibration. This occurs through ion pair formation by the MBAS anion and the methylene blue cation. The intensity of the resulting blue color in the organic phase is a measure of MBAS. The reported results from the MBAS test are always directly linked to the material used as a standard. For example, "0.72 mg MBAS/L (calculated as LAS, mol wt 318)."

Summary

So how does all of this impact data interpretation? The data user must first consider that compounds such as organic sulfates, sulfonates, carboxylates, phenols, and even simple inorganic anions such as cyanide, nitrate, thiocyanate, and chloride can be methylene bluereactive

and will result in a positive bias in the reported MBAS

concentration. Interference removal steps are included in the analytical method but they have variable effectiveness at removing these positive interferences. In general, MBAS results should be viewed as an acceptable overestimate of the anionic surfactants present in domestic wastewaters, with the understanding that surfactants may comprise only a small proportion of the total substances exhibiting a methylene blue reactivity in surface waters. According to Berna, et al, LAS may contribute as much as 75% of the MBAS in integrated sewage and 50% in treated water. Direct methylene blue analysis of extracts derived from sludge, sediment, and soil invariably leads to highly inflated estimates of LAS. (Berna JL, Moreno A, & Ferrer J (1991) *The behaviour of LAS in the environment*. J Chem Technol Biotechnol, 50: 387398.)

To end with, it may also be prudent to consider that the quantified anionic surfactants may be significantly less toxic than LAS (the surfactant used as the quantitative standard in the MBAS analysis). The bottom line is that although the MBAS method is an acceptable industry standard, when it comes to environmental impact assessments, the data user can not place too much reliance upon the exact number obtained from the MBAS test.

Marcos Aquino
Regional Radiation Program Manager
Office of Voluntary Air Programs
Air Protection Division (3AP50)
US EPA Region III
1650 Arch Street
Philadelphia, Pennsylvania 19103-2029
215.814.3422 office
215.514.8357 mobile
aquino.marcos@epa.gov
http://www.epa.gov/reg3artd/radiation/radiation.htm

DIM0084754 DIM0084755

From: Elizabeth Quinn/R3/USEPA/US
To: Marcos Aquino/R3/USEPA/US
Date: 12/12/2011 12:33 PM

Subject: Dimock share drive stuff

Ex. 6 - Personal Privacy

Betty Ann Quinn Toxicologist Technical Support Branch 215-814-3388

DIM0084754 DIM0084756